Advanced Mathematics

Support Programme*

Multiple Equations

$$
\text { If } \frac{a b}{a+b}=\frac{1}{4} \text { and } \frac{b c}{b+c}=\frac{1}{2} \text { and } \frac{a c}{a+c}=\frac{1}{8} \quad \text { find } a, b \text { and } c
$$

Rearrange the equations to get the following 3 equations

$$
\begin{align*}
& 4 a b=a+b \tag{1}\\
& 2 b c=b+c \tag{2}\\
& 8 a c=a+c \tag{3}
\end{align*}
$$

Rearrange (1) to make b the subject

$$
\begin{gathered}
a=4 a b-b \\
b(4 a-1)=a \\
b=\frac{a}{4 a-1}
\end{gathered}
$$

Rearrange (3) to make c the subject

$$
\begin{aligned}
& a=8 a c-c \\
& c(8 a-1)=a \\
& c=\frac{a}{8 a-1}
\end{aligned}
$$

Substitute expressions for b and c into equation (2) $\mathbf{2 b} \boldsymbol{c}=\boldsymbol{b}+\boldsymbol{c}$ giving

$$
\begin{gathered}
2\left(\frac{a}{4 a-1}\right)\left(\frac{a}{8 a-1}\right)=\frac{a}{4 a-1}+\frac{a}{8 a-1} \\
\frac{2 a^{2}}{(4 a-1)(8 a-1)}=\left(\frac{a(8 a-1)}{(4 a-1)(8 a-1)}\right)+\left(\frac{a(4 a-1)}{(4 a-1)(8 a-1)}\right) \\
\frac{2 a^{2}}{(4 a-1)(8 a-1)}=\frac{8 a^{2}-a+4 a^{2}-a}{(4 a-1)(8 a-1)}
\end{gathered}
$$

$$
\frac{2 a^{2}}{(4 a-1)(8 a-1)}=\frac{12 a^{2}-2 a}{(4 a-1)(8 a-1)}
$$

Equating the numerators only as denominators are the same expressions gives

$$
\begin{gathered}
2 a^{2}=12 a^{2}-2 a \\
10 a^{2}-2 a=0 \\
2 a(5 a-1)=0 \\
a=0 \quad \text { or } a=\frac{1}{5}
\end{gathered}
$$

$a=\frac{1}{5}$ is the only possible solution
*Can you explain why that is the case? Why can't $a=0$?
Substituting this value into (1) gives

$$
\begin{gathered}
4 a b-a=b \\
4 \times \frac{1}{5} b-\frac{1}{5}=b \\
\frac{4}{5} b-b=\frac{1}{5} \\
-\frac{1}{5} b=\frac{1}{5} \\
b=-1
\end{gathered}
$$

Substituting $a=\frac{1}{5}$ into (3) gives

$$
\begin{gathered}
8 a c-a=c \\
8 \times \frac{1}{5} \times c-\frac{1}{5}=c \\
\frac{8}{5} c-c=\frac{1}{5} \\
\frac{3}{5} c=\frac{1}{5} \\
c=\frac{1}{3}
\end{gathered}
$$

Giving the solution $a=\frac{1}{5} \quad b=-1 \quad$ and $c=\frac{1}{3}$
*To explain why a can't be $=0$ consider the original statements $\frac{a b}{a+b}=\frac{1}{4}$ and $\frac{a c}{a+c}=\frac{1}{8}$
They would both have a numerator of 0
$0 \div$ by 'anything' is 0 (except for $0 \div 0=$ undefined)
Therefore the statements would not be correct

