Mean squares

- Take two positive values > 1
- Find the mean of the two values
- Square it

Then

Which value is greater?

Is this always true?
Can you prove it?

- Take the same two values
- Square them
- Find the mean of the squares
- Try out several examples
- Is one expression always bigger than the other?
- Next try using x and y instead.
- If you subtract one expression from the other, can you work out if it's positive or negative?

()amsp

Mean squares Solution

$$
\rightarrow x \text { and } y
$$

- Take two positive values $>1 \quad \longrightarrow x$ and y
- Find the mean of the two values $\longrightarrow \frac{x+y}{2}$
- Square it

$$
\rightarrow\left(\frac{x+y}{2}\right)^{2}=\frac{x^{2}+y^{2}+2 x y}{4}
$$

Then

- Take the same two values
$\rightarrow x$ and y
- Square them
$\rightarrow x^{2}$ and y^{2}
- Find the mean of the squares

$$
\rightarrow \frac{x^{2}+y^{2}}{2}
$$

Which value is greater?
Is this always true?
Can you prove it?

amsp

Mean squares Solution

- Take two positive values > 1
- Find the mean of the two values
- Square it

Then

- Take the same two values
- Square them
- Find the mean of the squares

$$
\begin{aligned}
& \longrightarrow \frac{x^{2}+y^{2}+2 x y}{4} \\
& \longrightarrow \quad \frac{x^{2}+y^{2}}{2}
\end{aligned}
$$

- If you subtract one expression from the other, can you work out if it's positive or negative?

$$
\begin{aligned}
& \frac{x^{2}+y^{2}}{2}-\frac{x^{2}+y^{2}+2 x y}{4} \\
& =\frac{2 x^{2}+2 y^{2}}{4}-\frac{x^{2}+y^{2}+2 x y}{4} \\
& =\frac{x^{2}+y^{2}-2 x y}{4} \\
& =\frac{(x-y)^{2}}{4}
\end{aligned}
$$

Since we know any square number is positive, we can say

$$
\frac{(x-y)^{2}}{4}>0
$$

Therefore squaring the mean is greater than the mean of the squares

