Roots and Indices Equivalence Maze **Short activity** Starting from 2^6 find a route to the opposite side of the rectangle so that each value you land on is equivalent to 2^6 . You may only move one space horizontally or vertically each time – no diagonal moves allowed! | 2 ⁶ x2 ³ | 3^2x2^3 | (V16) ² | (2 ³) ³ | 8 ³ ÷8 | $4^4 x 4^{-3}$ | $(\sqrt[3]{8})^4$ | 8x4 ² | |--------------------------------|--------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------| | √8 ³ | $(2^3)^2$ | 8 ⁷ x8 ⁻⁵ | 4 ³ | 2 ⁻² x2 ⁷ | 64 ⁰ | 2 ⁵ x2 ³ | 4 ⁷ ÷2 ³ | | (√64) ³ | 8 ² | 2 ² x2 ³ | 2 ³ x2 ³ | $(2^3)^3$ | $(\sqrt[3]{8})^6$ | $4^6 x 4^{-3}$ | 2 ² x4 ² | | 2 ⁶ | (v64) ² | 4 ⁶ x4 ⁻² | (V16) ³ | $(2^2)^4$ | 8 ³ ÷2 ³ | 2 ⁻³ x2 ⁷ | (2 ²) ⁴ | | | | | | | $(2^2)^3$ | | | | 4^3x4^{-3} | $(2^5)^1$ | $(\sqrt[3]{64})^2$ | 2 ³ x8 | 2 ⁻¹ x2 ⁷ | $(\frac{1}{4})^{-3}$ | 16 ² | 64 |